(难易度在此处是对比其他统计paper而言,例如最难的顶峰是783,我就拿其他和它对比。介绍中还会涉及偏文偏理的问题,
凑合着看咯,普遍来说,统计是文理兼有,本科偏文部分更多。很多时候决定能否拿A+的标准往往不是因为不会作算数,求导,而是考试中的小文写不好。统计aveage难度要比数学物理的aveage要简单,但这两年没有见到过华人能文理兼修的学统计,例如数学好的未必读302/767/766好,文笔好的难过710的坎。)
奥大课程分析:
从stage 1 到phd 课程,无错,这次 压箱底的phd课程也一并给出,不给个精啊,或者给少分啊,那简直就是天怒人怨!!!!!!
先综合陈述一下我对stage 3前课程以及stage 7课程(post) 的最大感受。
大量课程结构是,前部分复习以前所学内容,后部分讲述本文内容,讲不完快速结题然后寄希望于下一张paper来给学生说明。
首当210,前面先是125复习,中间是210的真正内容,统计理论--- likelihood parameter estimation似然参数估计,最后一部分突然又跳到310Normal/t distribution. 然后就是208, 前面108复习,最后一章介绍326,330。关键这样还要考考你。
除了垂直相关,还会水平相关,最近的有210与225,上一个层次是320与325,310与325等。大部分理论课类型paper都会照顾学生到无微不至地解释地步,结果课程内容一缩再缩。大家可以在325课程内看到past 210的书, 比现在210多了整整一倍内容,可以说是210+225。
700的课程有一个共同特点,总是永远不会告诉你之前需要什么课程准备,到处雷区,进入了就是艰辛等死的节奏,幸运好一点的读过了相关paper,非常轻松,运气不好的,像我,多次中,一门课学成2门课,所以仅以此文分享与大家,勿走前人中招之路。
公理1 顺序最重要
很多课彼此之间都是相通相关的。例如,读了210还可以读225,但读了225就不准读210了。这个漏洞不知道部门什么时候能去填。还有,两个相关的paper,320/325,读了325再读320就更简单,但325能留到700的时候念,能念补充内容,相反320却没有。(虽然以前有720,就是320的进阶课程。)又或者,到了post阶段,技术性留简单课到最后来冲first class。
公理2 名字比编码更没有意义
本科阶段有分为 01线,25线以及10线。
01线是以101,201,301为首,虽然330是写明advancedstatistical model,看上去好像是201的进阶,其实不是,更多的分析在下面。相反301的内容基本都是201的内容,只是用了一个新软件去做。
10线是统计的理论方向,以210,310,710为首,虽然题目不进相同,但奥大就是这样的了,就是要和你玩文字游戏但内里有着自己的坚持。这三门总结得到的其实是asymptotictheory的一步步演化解释。210及310则重用力likelihood解决相关单变量,多变量的问题,710回归到CLT,Asymptotictheory 的核心,陈述10线的在推论中的合理性。
(注意,很多年前是有一门由Ross执教的graph in R叫110,不在10线范围。)
25线是统计的随机/概率路线,125,225,325为首,国外大部分职业考试的概率知识都能在这线上找到相关内容。新课程225,我没上,但课程内容上写上了momentgenerating 妇女ction,专门用在快速求解,在精算考试中会大量用到,也很合乎Ross计算系老师授课的特色。325则是更多地研究conditionalprobability,maths induction and markov chain,是700papers 中偏数学/计算类型paper的核心内容,尤其markovchain,老朋友了,就是没读325,打基础不好,做题可烦了。(就算没读325像我这样,很多paper要用到MC的话,还是会稍微介绍一下的,会在下文对必修课选读的方法介绍一下) 基本上,把25线以及10线都读了就基本呢能够满足日常统计推论,概率等比较数理方面的需求,并不是非要把数学,尤其applied方向的学上去,applied的数学大多为物理服务,统计上还真没有多少典型问题要用到很高深的擦亮calculus技巧。再次,phd例外,喜欢数学的例外,只喜欢数学应用的也例外。我对数学 作为double major的强烈不解是因为真的要能为统计服务的要去到700的系列(勉强上是这些,761、762、763、769(key)、770、786、787、789)。如果非要数理统计,例如写几个特牛B的数学随机模型啊,那还是先把数学读完honour再考虑统计吧。
难易度解释:
关于难易度,基本上,每个专业的学生都会说自己专业难的了,在这里我比较倾向与大家讨论,在准备不充分或充分下的难易度。
个人认为,如果按照prerequisite要求(准备充分), 大部分课程都很简单。这里描述一下统计里的难的定义。
难(“/”指either or ):有答案也看不懂 / 需要学了很多其他课程才会觉得这门课容易/ 老师评分有高度的主观意识/上课学一样,做功课又另一样/
简单分为:简单到并不需要去学/听recording都能学/
Stage 1
101/108 Introduction to Statistics
以前的101会比较简单。现在多了描iNZight的部分,ChrisWild的软件iNZight居然还能在高中教bootstrap,凭借这个拿了教育奖,顺理成章,101里现在也有了。配合动画生动解释究竟statistics(mean/differenceof mean/median) distribution 是怎么回事。
125 Probability and Its Applications
简单到并不需要去学, 可以上网看看就学会了,或者在 210/225里再学,非要说它存在的必要性是,如果有同学致力要考精算的概率考试,这门课已经涵括40%的内容了,以前的125更有对betadistribution的讲解;虽然难的在后面的225,710里,但出现难题的概率还是相对低的,对自己有信心的同学可以透过学习这门课做准备,进行越级挑战。
150 Lies, Damned Lies, and Statistics
在与女友共同学习philosophy 105G时,会见到很多对evidence,valid,strong等词的逻辑描述,我好奇为什么统计本身没有,后来答案发现就在150里。
以上3门没读过,不清楚难度,只是做了一遍卷,觉得很可以,以及参考了一些读过的人的意见,如有不对及遗漏,欢迎补充或指出。
Stage 2
20x Data Analysis
延续了101,我在奥大的第一门统计课。今年换了格式,其中考不再是纯选择题了,提高了些许难度。其实,现在本地高中学的统计的程度甚至有些超出101了,我在想会否有一日,允许可以在高中读统计的了可以免读101而直接201。起码,我这个例子 是没有学过101而直接201的。
BIOSCI 209 Biometry
内容大致跟stat20x一样。除了,
BIOSCI 209 teachescomputer based data analysis for BIOLOGY students. It is very similar to STATS20x but includes Nested ANOVA, an introduction to multivariate statistics andexcludes Time series.
Topics studiedinclude:
Exploratory DataAnalysis, the analysis of linear models including two-way analysis of variance,experimental design and multiple regression, the analysis of contingency tabledata including logistic regression, multivariate analysis and model selection.
与20x不一样, 取消了time series 部分,却换上了multivariateanalysis and model selection。个人觉得会比20x的time series部分更有用,毕竟不是每一个人也会选302(后议),而326的time series会讲得更详尽,而20x会有点太简陋。而multivariateanalysis and model selection在现实工作中更有用。
唯一要注意,有些科目要求biosci要B+,相反要求20x的读过就好,大家都是统计系的老师,厚此薄彼,毕竟不是同一个爹嘛。
210 Statistical Theory
前部分复习125知识,中间学likelihoodestimate。难度视老师决定。。。。有一届,Andrew教,整得人可惨了。烦,特别多assessment,比较烦,对自己自学能力有信心,直接225吧,我比较prefer225。Rachel教得太慢了。
假如undergraduate3年都没读210,又想读post,又已经有statsmajor了(例如301,326,330无需210,但已经帮你构成statsmajor了)还有最后一个机会,在summer会有隐藏课程390,自学一遍210,非常容易拿A+,进了post就可以申210 tutor了(负责tutorial,工时多,改卷容易,竞争大。貌似同是390的A+会比210的A+要更好申,亲身经历。)
225 Mathematical Statistics
统计系终于认识到自己往日方针的苦楚,决定新加开一门数理统计。暂时,部门有漏洞,先上210,可以再上225,先上225则不能上210了。
但是225 的Prereqs:STATS 125, MATHS 150. Coreqs:MATHS 250.
210 无,只有Coreqs:15 points from MATHS208, 250 or equivalent.
225比210要求数学证明、推导更多,定位在概率方向。210是推论方向(inferential)。
如果想数学读到253之前(maths 260,270 因人而异),读这个吧。Momentgenerating 太好用了。
想考精算的同学更加要考虑225,因为210根本帮不了你这方面。有兴趣的同学可以打开325 course website看past 210的课本,里面有最80%的精算概率部分考试内容。
220 Data Technologies
没读,但课程简介看了,
Topicsstudied include: How to Write Computer Code;Publishing Data on the World-Wide Web (HTML); Data Description and SemanticMarkup (XML); Data Storage (File Formats, Spreadsheets, Databases); DataManagement and Summary (Database Queries, SQL); Data Processing (Scripting,Pattern Matching, R).
非常贴近实际工作需要。回顾我现在的工作需要,非常需要一门课快速学习与之相关的使用及操作。没读compsci就读了吧。
不读也行,但自学,累。宁愿自学统计,不自学CS;宁愿自学CS,不自学maths。
255 Introduction to Operations Research
中文叫运筹学,研究优化问题,accounting331里也有。比较简单,也是0基础就能学的课,例子仍然是我自己,当时来的第一学期与255,208,maths208一起上,感觉3门课一点联系都没有。
当时想读honours数学也不够时间读,又怕没有2个major,就读了255,因为255+320+engsci391就有多一个major了,后来发现其实也不需要这样。
在这门课,第一次上GeoffreyPritchard的课,任何想学习在优化/金融方面的统计,都要上他的课,而且难的都是他。基本上是一个不善表达的老师,注意做好笔记以及勤看书,那这门课就简单了。