- UID
- 128720
- 热情
- 4503
- 人气
- 5648
- 主题
- 154
- 帖子
- 14946
- 精华
- 2
- 积分
- 12697
- 分享
- 0
- 记录
- 0
- 相册
- 0
- 好友
- 12
- 日志
- 0
- 在线时间
- 6782 小时
- 注册时间
- 2007-9-12
- 阅读权限
- 30
- 最后登录
- 2021-3-29
升级 53.94% - UID
- 128720
- 热情
- 4503
- 人气
- 5648
- 主题
- 154
- 帖子
- 14946
- 精华
- 2
- 积分
- 12697
- 阅读权限
- 30
- 注册时间
- 2007-9-12
|
A criminologist developed a test for predicting whether a teenager will become a
delinquent or not. Scores on the test can range from 0 to 100, with higher values
supposedly reflecting a greater criminal tendency. The criminologist classifies a teenager
as a potential delinquent if the teenager’s score exceeds 75.
Suppose that for a teenager considered a nondelinquent, scores on the test, N, are well
modelled by a Normal distribution with mean μ = 60 and standard deviation σ = 10,
i.e., N ~ Normal(μ = 60, σ = 10).
Use the computer output in Table 3 below to answer Questions 6 and 7 below.
Normal with mean = 60 and standard deviation = 10
x P(X <= x) P(X <= x) x
65.0 0.6915 0.025 40.40
70.0 0.8413 0.050 43.55
75.0 0.9332 0.075 45.60
80.0 0.9772 0.100 47.18
85.0 0.9938 0.250 53.26
90.0 0.9987
95.0 0.9998
Table 3: Normal(μ = 60, σ = 10) distribution
7. The test scores for the central 95% of nondelinquent teenagers is approximately
between:
(1) 40.0 and 80.0
(2) 40.4 and 79.6
(3) 43.6 and 76.4
(4) 43.6 and 79.6
(5) 40.4 and 76.4
我怎么觉得答案有问题,2的79.6是哪里来的,我觉得是40.4AND45.6 |
|